AIããŒã¿åæã®åãè§£ãæŸã¡ãŸããããŒã¿é§ååã®æªæ¥ã§æåããããã®å¿ é ã¹ãã«ãããŒã«ããã¯ããã¯ãåŠã³ãŸããããå°éå®¶åãã®ã°ããŒãã«ã¬ã€ãã§ãã
AIããŒã¿åæã¹ãã«ã®æ§ç¯ïŒæªæ¥ã®ããã®å æ¬çã¬ã€ã
æ¥éã«é²åããçŸä»£äžçã«ãããŠãããŒã¿ã¯æ°ããç³æ²¹ã§ããäžçäžã®çµç¹ã¯ãæ å ±ã«åºã¥ããæææ±ºå®ãè¡ããå¹çãåäžãããç«¶äºäžã®åªäœæ§ãç²åŸããããã«ãããŒã¿é§ååã®æŽå¯ã«ãŸããŸãäŸåããããã«ãªã£ãŠããŸãã人工ç¥èœïŒAIïŒã¯ãç§ãã¡ãããŒã¿ãåæããæ¹æ³ã«é©åœããããããé ãããã¿ãŒã³ãçºèŠããå°æ¥ã®ãã¬ã³ããäºæž¬ããè€éãªããã»ã¹ãèªååããããã®åŒ·åãªããŒã«ãšãã¯ããã¯ãæäŸããŠããŸããAIããŒã¿åæã¹ãã«ãéçºããããšã¯ããã¯ãæãŸããè³ç£ã§ããã ãã§ãªããæ§ã ãªæ¥çã®å°éå®¶ã«ãšã£ãŠå¿ èŠäžå¯æ¬ ãªãã®ã«ãªãã€ã€ãããŸãã
ãªãAIããŒã¿åæã¹ãã«ãäžå¯æ¬ ãªã®ã
AIããŒã¿ã¢ããªã¹ãã®éèŠã¯äžçäžã§æ¥å¢ããŠããŸããäŒæ¥ã¯ãçããŒã¿ãšå®çšçãªæŽå¯ãšã®éã®ã®ã£ãããåããããšãã§ãã人æãç©æ¥µçã«æ¢ããŠããŸãããããã®ã¹ãã«ãæ§ç¯ããããšããããªãã®ãã£ãªã¢ãšä»äºã®æªæ¥ã«ãšã£ãŠéèŠã§ããçç±ã¯æ¬¡ã®ãšããã§ãïŒ
- éçšã®æ©äŒã®å¢å ïŒ AIãšããŒã¿ãµã€ãšã³ã¹ã®åéã¯ææ°é¢æ°çã«æé·ããŠãããéèããã«ã¹ã±ã¢ã補é ãããŒã±ãã£ã³ã°ãªã©ã倿§ãªã»ã¯ã¿ãŒã§è±å¯ãªéçšæ©äŒãçã¿åºããŠããŸããæ±äº¬ããããã³ããŸã§ãäŒæ¥ã¯æèœãªã¢ããªã¹ããæ¢ããŠããŸãã
- ããé«ãåå ¥ã®å¯èœæ§ïŒ AIããŒã¿åæã¹ãã«ã¯åŽååžå Žã§é«ãè©äŸ¡ãããŠãããç«¶äºåã®ãã絊äžãšé åçãªçŠå©åçããã±ãŒãžã«ã€ãªãããŸããéèŠãå ±é ¬ãæ±ºå®ããŸãã
- åé¡è§£æ±ºèœåã®åäžïŒ AIããŒã¿åæã¯ãè€éãªããžãã¹èª²é¡ã«åãçµã¿ã驿°çãªè§£æ±ºçãéçºããããã®ããŒã«ãšãã¯ããã¯ãæäŸããŸããããªãã¯çµç¹ã«çã®äŸ¡å€ãããããããšãã§ããŸãã
- æææ±ºå®ã®æ¹åïŒ AIãæŽ»çšããŠããŒã¿ãåæããããšã§ãããæ å ±ã«åºã¥ããããŒã¿é§ååã®æææ±ºå®ãå¯èœã«ãªããããè¯ãçµæãšããžãã¹ããã©ãŒãã³ã¹ã®åäžã«ã€ãªãããŸããæææ±ºå®ã¯ããæ£ç¢ºãã€å¹æçã«ãªããŸãã
- ãã£ãªã¢ã¢ããïŒ AIããŒã¿åæã¹ãã«ãéçºããããšã§ãçµç¹å ã§ã®ãªãŒããŒã·ããã®åœ¹å²ããã£ãªã¢ã¢ããã®æ©äŒãžã®æãéãããŸãããããã®ã¹ãã«ã¯ãããªãããã䟡å€ã®ããåŸæ¥å¡ã«ããŸãã
- ã°ããŒãã«ãªé©çšæ§ïŒ ãããã®ã¹ãã«ã¯å°ççãªå¶çŽãåããŸããããã³ã¬ããŒã«ããã«ãªã³ããã¹ãã³ã®ãããã«ããŠããAIããŒã¿åæã¹ãã«ã¯ç§»è»¢å¯èœã§äŸ¡å€ããããŸãã
AIããŒã¿åæã«äžå¯æ¬ ãªã¹ãã«
AIããŒã¿åæã«ããã匷åºãªåºç€ãç¯ãã«ã¯ãæè¡çã¹ãã«ãšãœããã¹ãã«ã®çµã¿åãããå¿ èŠã§ãã以äžã«ãç¿åŸããå¿ èŠãããäž»èŠãªã¹ãã«ã®å èš³ã瀺ããŸãïŒ
1. ããã°ã©ãã³ã°èšèªïŒPythonãšR
Pythonã¯ããã®è±å¯ãªã©ã€ãã©ãªã䜿ããããæ§æããããŠå€§èŠæš¡ãªã³ãã¥ããã£ãµããŒãã«ãããééããªãAIããŒã¿åæã§æã人æ°ã®ããããã°ã©ãã³ã°èšèªã§ããNumPyãPandasãScikit-learnãTensorFlowãPyTorchãªã©ã®ã©ã€ãã©ãªã¯ãããŒã¿æäœãçµ±èšåæãæ©æ¢°åŠç¿ã深局åŠç¿ã®ããã®åŒ·åãªããŒã«ãæäŸããŸãã
Rã¯ãç¹ã«çµ±èšåŠãšããŒã¿å¯èŠåã®åéã§åºã䜿çšãããŠããããäžã€ã®ããã°ã©ãã³ã°èšèªã§ããçµ±èšã¢ããªã³ã°ãããŒã¿åæããããŠé åçãªèŠèŠåãäœæããããã®è±å¯ãªããã±ãŒãžã®ãšã³ã·ã¹ãã ãæäŸããŸããã©ã¡ãã®èšèªããåºç¯ãªããã¥ã¡ã³ããšåœ¹ç«ã€ãªã³ã©ã€ã³ã³ãã¥ããã£ããããŸãã
äŸïŒ ããªããã¡ãã·ã³ã·ãã£ã®éä¿¡äŒç€Ÿã®é¡§å®¢é¢åããŒã¿ãåæããŠãããšæ³åããŠã¿ãŠãã ãããPythonãšPandasã䜿çšããŠããŒã¿ãã¯ãªãŒã³ã¢ããããã³ååŠçããæ¬¡ã«Scikit-learnã䜿çšããŠã©ã®é¡§å®¢ãé¢åããå¯èœæ§ãé«ãããäºæž¬ããæ©æ¢°åŠç¿ã¢ãã«ãæ§ç¯ã§ããŸããããã«ãããäŒç€Ÿã¯è²Žéãªé¡§å®¢ãç¶æããããã«ç©æ¥µçã«ã€ã³ã»ã³ãã£ããæäŸããããšãã§ããŸãã
2. çµ±èšåæãšæ°åŠçåºç€
çµ±èšçæŠå¿µã®æ·±ãçè§£ã¯ãããŒã¿ãè§£éãããã¿ãŒã³ãç¹å®ããæ£ç¢ºãªäºæž¬ã¢ãã«ãæ§ç¯ããããã«äžå¯æ¬ ã§ããäž»èŠãªçµ±èšçæŠå¿µã«ã¯ä»¥äžãå«ãŸããŸãïŒ
- èšè¿°çµ±èšåŠïŒ äžå¿åŸåã®å°ºåºŠïŒå¹³åãäžå€®å€ãæé »å€ïŒãã°ãã€ãã®å°ºåºŠïŒåæ£ãæšæºåå·®ïŒãããã³ããŒã¿ååžã
- æšèšçµ±èšåŠïŒ 仮説æ€å®ãä¿¡é Œåºéãååž°åæãããã³ANOVAã
- 確çè«ïŒ 確çãååžãçµ±èšçæææ§ã®çè§£ã
- ç·åœ¢ä»£æ°ïŒ å€ãã®æ©æ¢°åŠç¿ã¢ã«ãŽãªãºã ã®åºç€ãšãªãæ°åŠãçè§£ããããã«äžå¯æ¬ ã§ãã
- 埮åç©ååŠïŒ æ©æ¢°åŠç¿ã§äœ¿çšãããæé©åã¢ã«ãŽãªãºã ãçè§£ããã®ã«åœ¹ç«ã¡ãŸãã
äŸïŒ ãã³ãã³ã®ããŒã±ãã£ã³ã°ããŒã ãæ°ããåºåãã£ã³ããŒã³ã®å¹æãçè§£ããããšèããŠããŸãã圌ãã¯ä»®èª¬æ€å®ã䜿çšããŠãå¯Ÿç §çŸ€ïŒåºåãèŠãªãã£ãã°ã«ãŒãïŒãšåŠçœ®çŸ€ïŒåºåãèŠãã°ã«ãŒãïŒã®éã§å£²äžã«çµ±èšçã«ææãªå·®ããããã©ããã倿ã§ããŸããããã«ããããã£ã³ããŒã³ãæ¬åœã«å¹æçã§ãããã©ããã倿ããã®ã«åœ¹ç«ã¡ãŸãã
3. ããŒã¿å¯èŠåãšã³ãã¥ãã±ãŒã·ã§ã³
èªèº«ã®çºèŠãå©å®³é¢ä¿è ã«å¹æçã«äŒããèœåã¯ãã©ã®ããŒã¿ã¢ããªã¹ãã«ãšã£ãŠãäžå¯æ¬ ã§ããMatplotlibãSeabornïŒPythonïŒãããã³ggplot2ïŒRïŒã®ãããªããŒã¿å¯èŠåããŒã«ã䜿çšãããšãæŽå¯ãæç¢ºãã€ç°¡æœã«èª¬æããé åçãªãã£ãŒããã°ã©ããäœæã§ããŸãã
广çãªã³ãã¥ãã±ãŒã·ã§ã³ã«ã¯ãèŽè¡ã®æè¡çç¥èã«åãããŠãæç¢ºã§çè§£ããããæ¹æ³ã§çºèŠãæç€ºããããšãå«ãŸããŸããè€éãªæŠå¿µãç°¡åãªèšèã§èª¬æããåæã«åºã¥ããŠå®çšçãªæšå¥šäºé ãæäŸã§ããå¿ èŠããããŸãã
äŸïŒ ãžã¥ããŒãã®å ¬è¡è¡çæ©é¢ãç æ°ã®èå»¶ã远跡ããŠããŸãã圌ãã¯ããŒã¿å¯èŠåããŒã«ã䜿çšããŠãæéãšå°åããšã®çäŸæ°ã瀺ãã€ã³ã¿ã©ã¯ãã£ããªå°å³ããã£ãŒããäœæã§ããŸããããã«ãããå ¬è¡è¡çåœå±ã¯ç æ°ã®èå»¶ãçè§£ãããªãœãŒã¹ã广çã«å²ãåœãŠãããšãã§ããŸãã
4. æ©æ¢°åŠç¿ã𿷱局åŠç¿
æ©æ¢°åŠç¿ïŒMLïŒã¯AIã®ãµãã»ããã§ãããæç€ºçã«ããã°ã©ã ãããããšãªãããŒã¿ããåŠç¿ã§ããã¢ã«ãŽãªãºã ã®æ§ç¯ã«çŠç¹ãåœãŠãŠããŸããäž»èŠãªMLã¢ã«ãŽãªãºã ã«ã¯ä»¥äžãå«ãŸããŸãïŒ
- æåž«ããåŠç¿ïŒ ã©ãã«ä»ãããŒã¿ããåŠç¿ããã¢ã«ãŽãªãºã ïŒäŸïŒåé¡ãååž°ïŒã
- æåž«ãªãåŠç¿ïŒ ã©ãã«ãªãããŒã¿ããåŠç¿ããã¢ã«ãŽãªãºã ïŒäŸïŒã¯ã©ã¹ã¿ãªã³ã°ã次å åæžïŒã
- 匷ååŠç¿ïŒ ç°å¢ãšã®çžäºäœçšãéããŠè©Šè¡é¯èª€ãç¹°ãè¿ããŠåŠç¿ããã¢ã«ãŽãªãºã ã
深局åŠç¿ïŒDLïŒã¯MLã®ãµããã£ãŒã«ãã§ãããè€æ°ã®å±€ãæã€äººå·¥ãã¥ãŒã©ã«ãããã¯ãŒã¯ã䜿çšããŠããŒã¿ããè€éãªãã¿ãŒã³ãåŠç¿ããŸããDLã¯ãç»åèªèãèªç¶èšèªåŠçãé³å£°èªèãªã©ã®ã¿ã¹ã¯ã«ç¹ã«åœ¹ç«ã¡ãŸãã
äŸïŒ ãµã³ããŠãã®eã³ããŒã¹äŒæ¥ã¯ãæ©æ¢°åŠç¿ã䜿çšããŠã顧客ã®éå»ã®è³Œå ¥å±¥æŽãé²èЧ履æŽã«åºã¥ããŠååãææ¡ããæšå¥šã·ã¹ãã ãæ§ç¯ã§ããŸããããã«ããã売äžãå¢å ãã顧客æºè¶³åºŠãåäžããŸãã
5. ããŒã¿ã©ã³ã°ãªã³ã°ãšååŠç
å®äžçã®ããŒã¿ã¯ãã°ãã°ä¹±éã§ãäžå®å šã§ãäžè²«æ§ããããŸãããããŒã¿ã©ã³ã°ãªã³ã°ïŒããŒã¿ã¯ãªãŒãã³ã°ãŸãã¯ããŒã¿ãã³ãžã³ã°ãšãåŒã°ããïŒã¯ãçããŒã¿ãåæã«äœ¿çšã§ãã圢åŒã«å€æããäœæ¥ã§ããããã«ã¯ä»¥äžãå«ãŸããŸãïŒ
- æ¬ æå€ã®åŠçïŒ æ¬ æå€ãè£å®ããããæ¬ æããŒã¿ã®ããè¡ãåé€ããã
- ããŒã¿å€æïŒ ã¢ãã«ã®ããã©ãŒãã³ã¹ãåäžãããããã«ãããŒã¿ãã¹ã±ãŒãªã³ã°ãæ£èŠåããŸãã¯ãšã³ã³ãŒãã£ã³ã°ããã
- ããŒã¿ã¯ãªãŒãã³ã°ïŒ éè€ãåé€ãããšã©ãŒãä¿®æ£ããããŒã¿ã®äžè²«æ§ã確ä¿ããã
äŸïŒ ã·ã³ã¬ããŒã«ã®éèæ©é¢ãã¯ã¬ãžããã«ãŒãååŒããŒã¿ãåæããŠããŸãã圌ãã¯ãäžæ£ååŒãåé€ãã顧客ãããã¡ã€ã«ã®æ¬ æå€ãåŠçããããŒã¿åœ¢åŒãæšæºåããããšã«ãã£ãŠããŒã¿ãã¯ãªãŒãã³ã°ããå¿ èŠããããŸããããã«ãããåæçšã®ããŒã¿ãæ£ç¢ºã§ä¿¡é Œã§ãããã®ã«ãªããŸãã
6. ããŒã¿ããŒã¹ç®¡çãšSQL
ã»ãšãã©ã®ããŒã¿ã¯ããŒã¿ããŒã¹ã«ä¿åãããŠããŸããããŒã¿ããŒã¹ç®¡çã·ã¹ãã ïŒDBMSïŒãšSQLïŒæ§é åç §äŒèšèªïŒã®ãã£ããããçè§£ã¯ãããŒã¿ãžã®ã¢ã¯ã»ã¹ãã¯ãšãªãããã³æäœã«äžå¯æ¬ ã§ããäž»èŠãªã¹ãã«ã«ã¯ä»¥äžãå«ãŸããŸãïŒ
- SQLã¯ãšãªïŒ ããŒã¿ããŒã¹ããããŒã¿ãååŸããã£ã«ã¿ãªã³ã°ãéèšããããã®SQLã¯ãšãªã®äœæã
- ããŒã¿ããŒã¹èšèšïŒ ããŒã¿ããŒã¹ã¹ããŒãããªã¬ãŒã·ã§ã³ã·ãããæ£èŠåã®çè§£ã
- ããŒã¿ãŠã§ã¢ããŠãžã³ã°ïŒ å€§èŠæš¡ãªããŒã¿ã»ãããä¿åããã³ç®¡çããããã®ããŒã¿ãŠã§ã¢ããŠãžã³ã°ã®æŠå¿µãšæè¡ã®ç¥èã
äŸïŒ ããã€ã®ç©æµäŒç€Ÿãã貚ç©ã®äœçœ®ãšã¹ããŒã¿ã¹ã远跡ããå¿ èŠããããŸãã圌ãã¯SQLã䜿çšããŠãè²šç©æ å ±ãæ ŒçŽããããŒã¿ããŒã¹ã«ã¯ãšãªãå®è¡ããé éæéãšæœåšçãªé å»¶ã«é¢ããã¬ããŒããçæã§ããŸããSQLã¯å¹ççãªããŒã¿ååŸãå¯èœã«ããŸãã
7. ããã°ããŒã¿æè¡ïŒä»»æã ãæšå¥šïŒ
ããŒã¿éãæ¡å€§ãç¶ããã«ã€ããŠãããã°ããŒã¿æè¡ãžã®ç²Ÿéã¯ãŸããŸã䟡å€ãé«ãŸã£ãŠããŸãããããã®æè¡ã«ã¯ä»¥äžãå«ãŸããŸãïŒ
- HadoopïŒ å€§èŠæš¡ãªããŒã¿ã»ããã®ããã®åæ£ã¹ãã¬ãŒãžããã³åŠçãã¬ãŒã ã¯ãŒã¯ã
- SparkïŒ ããã°ããŒã¿åæã®ããã®é«éã§æ±çšæ§ã®é«ãããŒã¿åŠçãšã³ãžã³ã
- ã¯ã©ãŠãã³ã³ãã¥ãŒãã£ã³ã°ãã©ãããã©ãŒã ïŒ Amazon Web ServicesïŒAWSïŒãMicrosoft AzureãGoogle Cloud PlatformïŒGCPïŒãªã©ã®ãµãŒãã¹ã¯ãããã°ããŒã¿ã®ä¿åãšåŠçã®ããã®ã¹ã±ãŒã©ãã«ã§è²»çšå¯Ÿå¹æã®é«ããœãªã¥ãŒã·ã§ã³ãæäŸããŸãã
äŸïŒ ãããªã³ã®ãœãŒã·ã£ã«ã¡ãã£ã¢äŒæ¥ãããã¬ã³ããçè§£ãã³ã³ãã³ããããŒãœãã©ã€ãºããããã«ãŠãŒã¶ãŒã¢ã¯ãã£ããã£ããŒã¿ãåæããŠããŸãã圌ãã¯HadoopãšSparkã䜿çšããŠãäœçŸäžãã®ãŠãŒã¶ãŒã«ãã£ãŠæ¯æ¥çæãããèšå€§ãªéã®ããŒã¿ãåŠçã§ããŸãã
8. ã¯ãªãã£ã«ã«ã·ã³ãã³ã°ãšåé¡è§£æ±º
AIããŒã¿åæã¯åã«ã¢ã«ãŽãªãºã ãé©çšããããšã ãã§ã¯ãããŸãããå®äžçã®åé¡ã解決ããããšã§ããåé¡ãå®çŸ©ããé¢é£ããŒã¿ãç¹å®ããé©åãªæè¡ãéžæããçµæãè§£éããããã«ã¯ã匷åãªã¯ãªãã£ã«ã«ã·ã³ãã³ã°ãšåé¡è§£æ±ºã¹ãã«ãäžå¯æ¬ ã§ãã
äŸïŒ ããšãã¹ã¢ã€ã¬ã¹ã®å°å£²ãã§ãŒã³ã売äžã®æžå°ãçµéšããŠããŸããããŒã¿ã¢ããªã¹ãã¯ãå€åãã顧客ã®å¥œã¿ãç«¶äºã®æ¿åãçµæžçèŠå ãªã©ãåé¡ã®æ ¹æ¬åå ãç¹å®ããããã«ã¯ãªãã£ã«ã«ã·ã³ãã³ã°ã¹ãã«ã䜿çšããå¿ èŠããããŸãããã®åŸãããŒã¿åææè¡ã䜿çšããŠãããã®èŠå ã調æ»ããå£²äžæžå°ã«å¯ŸåŠããããã®è§£æ±ºçãéçºã§ããŸãã
9. ãã¡ã€ã³å°éç¥è
æè¡çãªã¹ãã«ã¯äžå¯æ¬ ã§ãããåããŠããæ¥çãåéã®ãã¡ã€ã³å°éç¥èãæã€ããšã¯ãããŒã¿ãåæããææçŸ©ãªæŽå¯ãçã¿åºãèœåãå€§å¹ ã«åäžãããããšãã§ããŸããããžãã¹ã®æèãšãããªãã®ãã¡ã€ã³ã«ãããç¹å®ã®èª²é¡ãšæ©äŒãçè§£ããããšã§ãããé¢é£æ§ã®é«ã質åãããçµæããã广çã«è§£éãããã䟡å€ã®ããæšå¥šäºé ãæäŸããããšãã§ããŸãã
äŸïŒ ãã¥ãŒãªããã®è£œè¬äŒç€Ÿã§åãããŒã¿ã¢ããªã¹ãã¯ãå»è¬åéçºããã»ã¹ãèšåºè©Šéšãããã³ã«ãããã³èŠå¶èŠä»¶ãçè§£ããå¿ èŠããããŸãããã®ãã¡ã€ã³å°éç¥èã«ãããèšåºè©ŠéšããŒã¿ããã广çã«åæããæœåšçãªå»è¬ååè£ãç¹å®ããããšãã§ããŸãã
AIããŒã¿åæã¹ãã«ã®æ§ç¯æ¹æ³
ããªãã®çµæŽãçµéšã¬ãã«ã«é¢ä¿ãªããAIããŒã¿åæã¹ãã«ãæ§ç¯ããã®ã«åœ¹ç«ã€ãªãœãŒã¹ã¯æ°å€ããããŸãã以äžã«ãåŠç¿ã®æ ãå°ãããã®ããŒããããã瀺ããŸãïŒ
1. ãªã³ã©ã€ã³ã³ãŒã¹ãšèªå®è³æ Œ
CourseraãedXãUdacityãDataCampãKhan Academyãªã©ã®ãã©ãããã©ãŒã ã¯ãããŒã¿ãµã€ãšã³ã¹ãæ©æ¢°åŠç¿ãAIã«é¢ããå¹ åºããªã³ã©ã€ã³ã³ãŒã¹ãšèªå®è³æ ŒãæäŸããŠããŸãããããã®ã³ãŒã¹ã¯ãã¹ãã«ãéçºããã®ã«åœ¹ç«ã€æ§é åãããåŠç¿ãã¹ãšå®è·µçãªãããžã§ã¯ããæäŸããŸããããªãã®ç¹å®ã®èå³ããã£ãªã¢ç®æšã«åã£ãã³ãŒã¹ãéžæããŠãã ãããå€ãã¯ãè©å€ã®è¯ã倧åŠããäžçäžã§å©çšå¯èœã§ãã
2. ããŒããã£ã³ã
ããŒã¿ãµã€ãšã³ã¹ããŒããã£ã³ãã¯ãAIããŒã¿åæã®ãã£ãªã¢ãéå§ããããã«å¿ èŠãªã¹ãã«ãè¿ éã«ç¿åŸããã®ã«åœ¹ç«ã€ãéäžçã§æ²¡å ¥åã®ãã¬ãŒãã³ã°ããã°ã©ã ãæäŸããŸãããããã®ããŒããã£ã³ãã«ã¯éåžžãå®è·µçãªãããžã§ã¯ããæ¥çã®å°éå®¶ããã®ã¡ã³ã¿ãŒã·ããããã£ãªã¢ãµããŒããµãŒãã¹ãå«ãŸããŸããã³ãããããåã«ããŒããã£ã³ãã培åºçã«èª¿æ»ããèªåã®åŠç¿ã¹ã¿ã€ã«ãšäºç®ãèæ ®ããŠãã ããã
3. 倧åŠã®ããã°ã©ã
ããæ£åŒãªæè²ãæ±ããŠããå Žåã¯ãããŒã¿ãµã€ãšã³ã¹ãã³ã³ãã¥ãŒã¿ãµã€ãšã³ã¹ãçµ±èšåŠããŸãã¯é¢é£åéã®åŠäœãååŸããããšãæ€èšããŠãã ãããçŸåšãå€ãã®å€§åŠãAIãšæ©æ¢°åŠç¿ã®å°éããã°ã©ã ãæäŸããŠããŸããSTEMã®å°éç¥èã§ç¥ãããåœã®æ©é¢ãæ€èšããŠãã ããã
4. èªå·±åŠç¿ãªãœãŒã¹
ãªã³ã©ã€ã³ã«ã¯ããã¥ãŒããªã¢ã«ãããã°æçš¿ãããã¥ã¡ã³ãããªãŒãã³ãœãŒã¹ãããžã§ã¯ããªã©ãç¡æ°ã®ç¡æãªãœãŒã¹ããããŸãããããã®ãªãœãŒã¹ã掻çšããŠãæ£åŒãªæè²ãè£ã£ãããç¹å®ã®ã¹ãã«ãç¬åŠã§åŠãã ãããŠãã ãããTowards Data ScienceãKaggleãGitHubãªã©ã®ãŠã§ããµã€ããæ¢çŽ¢ããŠãã ããã
5. ãããžã§ã¯ããšå®è·µ
AIããŒã¿åæãåŠã¶æè¯ã®æ¹æ³ã¯ãå®è·µããããšã§ããã¹ãã«ãå¿çšããå®è·µçãªçµéšãç©ãããšãã§ããçŸå®äžçã®ãããžã§ã¯ãã«åãçµã¿ãŸããããKaggleãUCI Machine Learning Repositoryã§ããŒã¿ã»ãããèŠã€ãããããã䜿çšããŠç¬èªã®ã¢ãã«ãæ§ç¯ããããŒã¿ãåæããããšãã§ããŸããããã«ãœã³ãããŒã¿ãµã€ãšã³ã¹ã³ã³ããã£ã·ã§ã³ã«åå ããŠãã¹ãã«ã詊ããä»ã®äººããåŠã³ãŸããããæœåšçãªéçšäž»ã«ããªãã®èœåã瀺ãããã®ãããžã§ã¯ãã®ããŒããã©ãªãªãæ§ç¯ããŠãã ããã
6. ãããã¯ãŒãã³ã°ãšã³ãã¥ããã£ãžã®åå
ãªã³ã©ã€ã³ãã©ãŒã©ã ãããŒãã¢ãããã«ã³ãã¡ã¬ã³ã¹ãéããŠãä»ã®ããŒã¿ãµã€ãšã³ãã£ã¹ããAIå°éå®¶ãšã€ãªãããŸããããããã«ããã圌ãã®çµéšããåŠã³ãç¥èãå ±æããææ°ã®ãã¬ã³ããæè¡ã«ã€ããŠææ°ã®æ å ±ãåŸãããšãã§ããŸããããªãã®éœåžãå°åã®ããŒã«ã«ãªããŒã¿ãµã€ãšã³ã¹ã³ãã¥ããã£ãæ¢ããããStack OverflowãRedditã®r/datascienceãªã©ã®ãªã³ã©ã€ã³ã³ãã¥ããã£ã«åå ãããããŠãã ããã
AIããŒã¿åæã®ããã®ããŒã«ãšãã¯ãããžãŒ
以äžã¯ãAIããŒã¿åæã§æã人æ°ããããåºã䜿çšãããŠããããŒã«ãšãã¯ãããžãŒã®äžéšã§ãïŒ
- ããã°ã©ãã³ã°èšèªïŒ Python, R, Scala, Java
- ããŒã¿åæã©ã€ãã©ãªïŒ NumPy, Pandas, Scikit-learn, Statsmodels (Python), dplyr, tidyr, ggplot2 (R)
- æ©æ¢°åŠç¿ãã¬ãŒã ã¯ãŒã¯ïŒ TensorFlow, PyTorch, Keras, XGBoost
- ããŒã¿å¯èŠåããŒã«ïŒ Matplotlib, Seaborn, Plotly, Tableau, Power BI
- ããŒã¿ããŒã¹ç®¡çã·ã¹ãã ïŒ MySQL, PostgreSQL, MongoDB
- ããã°ããŒã¿æè¡ïŒ Hadoop, Spark, Hive, Pig
- ã¯ã©ãŠãã³ã³ãã¥ãŒãã£ã³ã°ãã©ãããã©ãŒã ïŒ Amazon Web Services (AWS), Microsoft Azure, Google Cloud Platform (GCP)
- çµ±åéçºç°å¢ïŒIDEïŒïŒ Jupyter Notebook, VS Code, PyCharm, RStudio
AIããŒã¿åæã®ãã£ãªã¢ãã¹
AIããŒã¿åæã¹ãã«ãéçºããããšã§ã以äžã®ãããªããŸããŸãªãšããµã€ãã£ã³ã°ãªãã£ãªã¢ãã¹ãžã®æãéãããŸãïŒ
- ããŒã¿ãµã€ãšã³ãã£ã¹ãïŒ ããžãã¹åé¡ã解決ããããã«æ©æ¢°åŠç¿ã¢ãã«ãéçºã»å®è£ ããã
- ããŒã¿ã¢ããªã¹ãïŒ ããŒã¿ãåéãã¯ãªãŒãã³ã°ãåæããŠãã¬ã³ããæŽå¯ãç¹å®ããã
- æ©æ¢°åŠç¿ãšã³ãžãã¢ïŒ æ¬çªç°å¢ã§æ©æ¢°åŠç¿ã¢ãã«ãæ§ç¯ã»å±éããã
- AIãªãµãŒãã£ãŒïŒ æ°ããAIã¢ã«ãŽãªãºã ãæè¡ã«é¢ããç ç©¶ãè¡ãã
- ããžãã¹ã€ã³ããªãžã§ã³ã¹ã¢ããªã¹ãïŒ ããŒã¿ã䜿çšããŠããžãã¹ããã©ãŒãã³ã¹ã远跡ããã¬ããŒããããã·ã¥ããŒããäœæããã
- ããŒã¿ãšã³ãžãã¢ïŒ ããŒã¿ãä¿åã»åŠçããããã®ã€ã³ãã©ã¹ãã©ã¯ãã£ãæ§ç¯ã»ç¶æããã
AIããŒã¿åæã®æªæ¥
AIããŒã¿åæã®åéã¯çµ¶ããé²åããŠããŸããæ°ããæè¡ããã¯ããã¯ãåžžã«ç»å ŽããŠããŸãã以äžã¯ããã®åéã®æªæ¥ã圢äœã£ãŠããäž»èŠãªãã¬ã³ãã®äžéšã§ãïŒ
- èªåæ©æ¢°åŠç¿ïŒAutoMLïŒïŒ AutoMLãã©ãããã©ãŒã ã¯ãæ©æ¢°åŠç¿ã¢ãã«ã®æ§ç¯ãšå±éã®ããã»ã¹ãèªååããå°éå®¶ã§ãªããŠãAIãæŽ»çšããããããŸãã
- 説æå¯èœãªAIïŒXAIïŒïŒ XAIã¯ãéæã§çè§£å¯èœãªAIã¢ãã«ã®éçºã«çŠç¹ãåœãŠãŠããããŠãŒã¶ãŒãã¢ãã«ãã©ã®ããã«æææ±ºå®ãè¡ãããçè§£ã§ããããã«ããŸãã
- é£ååŠç¿ïŒ é£ååŠç¿ã«ãããããŒã¿ãå ±æããããšãªã忣ããŒã¿ã§æ©æ¢°åŠç¿ã¢ãã«ããã¬ãŒãã³ã°ã§ãããã©ã€ãã·ãŒãšã»ãã¥ãªãã£ãä¿è·ããŸãã
- ãšããžAIïŒ ãšããžAIã¯ãã¹ããŒããã©ã³ãIoTããã€ã¹ãªã©ã®ãšããžããã€ã¹ã«AIã¢ãã«ãå±éãããªã¢ã«ã¿ã€ã ã®ããŒã¿åŠçãšæææ±ºå®ãå¯èœã«ããŸãã
- çæAIïŒ çæAIã¢ãã«ã¯ãç»åãããã¹ãã鳿¥œãªã©ã®æ°ããããŒã¿ãçæã§ããŸãã
çµè«
AIããŒã¿åæã¹ãã«ãæ§ç¯ããããšã¯ãããªãã®æªæ¥ãžã®æŠç¥çæè³ã§ãããããã®ã¹ãã«ãžã®éèŠã¯æ¥éã«é«ãŸã£ãŠãããAIã广çã«æŽ»çšããŠããŒã¿ãåæã§ããå°éå®¶ã¯ãä»åŸæ°å¹Žéã§éåžžã«æ±ããããããã«ãªãã§ãããããã®ã¬ã€ãã§æŠèª¬ãããŠããå¿ é ã®ã¹ãã«ãããŒã«ããã¯ããã¯ãç¿åŸããããšã§ãAIã®åãè§£ãæŸã¡ãããŒã¿é§ååã®æªæ¥ã§æåããããšãã§ããŸããç¶ç¶çãªåŠç¿ãåãå ¥ããææ°ã®ãã¬ã³ããåžžã«ææ¡ããçŸå®äžçã®ãããžã§ã¯ãã«åãçµãããšã§ã¹ãã«ãå®è·µããŠãã ãããçç·ŽããAIããŒã¿ã¢ããªã¹ãã«ãªãããã®æ ã¯å°é£ãããããŸãããããã®å ±é ¬ã¯åªåã«èŠåãã ãã®äŸ¡å€ããããŸãã
ããŒã¿åæã®ã°ããŒãã«ãªç¶æ³ã¯å€æ§ã§ãã€ãããã¯ã§ããããšãå¿ããªãã§ãã ãããç°ãªãæåãèŠç¹ããåŠã¶ããšã«ãªãŒãã³ã§ãããå æ¬çã§å ¬å¹³ãªãœãªã¥ãŒã·ã§ã³ãæ§ç¯ããããåªããŠãã ãããã°ããŒãã«ãªèãæ¹ãåãå ¥ããããšã§ãAIãäžçã®æãå·®ãè¿«ã£ã課é¡ã®ããã€ãã解決ããããã«äœ¿çšãããæªæ¥ã«è²¢ç®ããããšãã§ããŸãã
ããã¯ãããªãã®ãã£ãªã¢ãå€é©ããAIããŒã¿åæã®åéã§ãªãŒããŒã«ãªããã£ã³ã¹ã§ãã仿¥ããããªãã®æ ãå§ããŸãããïŒ